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 If you have read the Preface, you will have been cued into the importance of prob-
ability in how we now understand and explain thinking and reasoning. We 
therefore open with this central topic: it forms the basis of explanation across 
the spectrum of thought. In this chapter, we shall look at research that assesses 
how people judge probability directly. You may have come across the word in 
statistics classes, and already be stifl ing a yawn. If so, wake up: probability is far 
from being just a dry technical matter best left in the classroom. Everyone 
judges probability, and does so countless times every day. You might have 
wondered today whether it is going to rain, how likely you are to fall victim to the 
latest fl u outbreak, whether your friend will be in her usual place at lunchtime, 
and so on. 

 How do we make these judgments? We can make a comparison between 
 normative  systems, which tell us what we ought to think, and  descriptive  data on 
how people actually do think. To get you going in doing this, here are some ques-
tions devised by my statistical alter ego, Dr Horatio Scale. Answering them will 
raise the probability that you will appreciate the material in the rest of this chapter. 
We shall look at the answers in the next section.

   1 a    What is the probability of drawing the ace of spades from a fair deck of 
cards?

   b   What is the probability of drawing an ace of any suit?  
  c   What is the probability of drawing an ace or a king?  
  d   What is the probability of drawing an ace and then a king?     

  2   You are about to roll two dice. What is the chance that you will get ‘snake 
eyes’ (double 1)?  

  3 a    What is the chance that you will win the jackpot in the National Lottery 
this week?

   b   What is the chance that you will win any prize at all this week?     

  (The British lottery lets you choose six numbers from 1 to 49. You win the 
jackpot if all your six numbers are drawn; you win lesser prizes if three, four 
or fi ve of your numbers are drawn.)  

  4   Yesterday, the weather forecaster said that there was a 30% chance of rain 
today, and today it rained. Was she right or wrong?  

  5   What is the chance that a live specimen of the Loch Ness Monster will be 
found?  

  6   Who is more likely to be the victim of a street robbery, a young man or an 
old lady?  

  7   Think about the area where you live. Are there more dogs or cats in the 
neighbourhood?     

  Defi ning probability 

 The phrase ‘normative systems’, plural, was used above because even at the formal 
level, probability means different things to different people. It is one of the puzzles 
of history that formal theories of probability were only developed comparatively 
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recently, since the mid-17th century. Their original motivations were quite prac-
tical, due to the need to have accurate ways of calculating the odds in gambling, 
investment and insurance. This early history is recounted by Gigerenzer, Swijtink, 
Porter, Daston, Beatty and Krüger (1989) and by Gillies (2000). Gillies solves the 
historical puzzle by pointing to the use of primitive technology by the ancient 
Greeks when gambling, such as bones instead of accurately machined dice, and to 
their lack of effi cient mathematical symbol systems for making the necessary 
calculations – think of trying to work out odds using Roman numerals. All four of 
the formal defi nitions of probability that are still referred to have been developed 
since the early 20th century. Here they are. 

  Logical possibility 

 Probability as logical possibility really only applies to objectively unbiased situa-
tions such as true games of chance, where there is a set of equally probable alter-
natives. We have to assume that this is the case when working out the odds, but it 
is hard to maintain this stipulation in real life. This is behind Gillies’ explanation of 
why the ancient Greeks and Romans could not develop a theory of probability from 
their own games of ‘dice’ made from animal bones: these have uneven sides that 
are consequently not equally likely to turn up. 

 To see how we can work out odds using logical possibility, let us take 
Dr Scale’s fi rst question, and assume that we are dealing with a properly shuffl ed, 
fair deck of cards, so that when we draw one from it, its chances are the same as 
any other’s. There are 52 cards in the deck, only one of which is the ace of spades, 
so its odds are 1:52. Odds are often expressed in percentages: in this case, it is 
about 1.92%. Probability in mathematics and statistics is usually given as a decimal 
number in the range between 0 and 1: in this case, it is .0192. An ace of any suit? 
There are four of them, so we can work out 4:52 (i.e. 1:13) in the same way, or 
multiply .0192 by four to obtain the answer: .077. 

 The odds of an ace  or  a king are the odds of each added together: there is one 
of each in each suit of 13 cards, so the joint odds are 2:13, or .154. Question 1d is a 
bit more complicated. It introduces us to the idea of  conditional probability , because 
we need to calculate the probability of a king  given  that you have drawn an ace. 
Each has the probability .077, and you obtain the conditional probability by multi-
plying them together, which gives the result of just under .006, i.e. 6:1000 – a very 
slim chance. 

 Now you can address Dr Scale’s third question, the lottery odds. With 49 
numbers to choose from, the odds of the fi rst are clearly 1:49. This number is no 
longer available when you come to choose the second number, so its odds are 1:48, 
and so on. Sticking with just these two for a moment, the odds of your fi rst one and 
then your second one coming up can be worked out just as with the ace and king: 
1:49 × 1:48, or .0204 × .0208 = just over .0004. But with the lottery, the order in 
which the numbers are drawn does not matter, so we have to multiply that number 
by the number of orders in which these two numbers could be drawn. That is given 
by the factorial of the number of cases, in this case 2 × 1 = 2. This number replaces 
the 1 in the odds ratio, which now becomes 2:49 × 48. You simply expand this 
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procedure to work out the chances of 6 numbers out of 49 being drawn in any 
order. If you want to do this yourself, it is probably easiest to use the numbers in 
the following form and then use cancelling, otherwise the long strings of zeroes 
that will result if you use the decimal notation will boggle your calculator:

       6 × 5 × 4 × 3 × 2 × 1
49 × 48 × 47 × 46 × 45 × 44

 The top line is factorial 6, for the number of orders in which six numbers could 
appear. The resulting odds are approximately 1:13.98 million. So if you play once a 
week, you can expect to win the jackpot about once every quarter of a million 
years. 

 Question 3b asked about the odds of winning any prize at all. You can work 
out the odds of three, four or fi ve of your numbers coming up in exactly the same 
way as just described. You don’t just add all these results together, however, because 
there are numerous ways in which, say, three numbers from the six you have 
chosen can come up. So you have to multiply each odds result by this number, and 
then add them all up. In case you don’t feel up to it, I can tell you that the odds of 
winning any prize in any one week are around 1:57. So a regular player should get 
a prize about once a year, although this will almost certainly be the lowest prize (the 
odds of three of your numbers coming up are about 1:54). I shall deal with whether, 
in the face of these odds, playing the lottery is a good decision in  Chapter 8 .  

 Frequency theory has roots that go back to the 19th century, but it was developed 
in most detail in the mid-20th, and has been highly infl uential ever since. In 
psychology, this infl uence has been even more recent, as we shall see later in this 
chapter. People who adopt frequency theory are called  frequentists , and they regard 
probability as the proportion of times an event occurs out of all the occasions it 
could have occurred, known as the  collective . There are two kinds of collectives, 
referred to by an early frequentist, von Mises (1950), as  mass phenomena  or  repeti-
tive events . 

 Dr Scale’s sixth question can be taken as a frequency question about a mass 
phenomenon: you could count up the number of street robberies and look at the 
proportions where the victims were old ladies and young men, and see which was 
the greater. Games of chance, such as coin fl ips, dice and lotteries, can also be 
analysed in terms of frequencies: these are repetitive events. Instead of working out 
the odds mathematically, you could count up the number of jackpot winners as the 
proportion of players, for instance. Over time, the results of the two probabilities, 
frequency and odds, should converge; if they don’t, you have detected a bias. 
Gamblers can be exquisitely sensitive to these biases: Gillies (2000) tells us about a 
17th century nobleman whose was able, through his extensive experience with dice 
games, to detect the difference between odds of .5000 and .4914, a difference of 1.7%. 
Question 7 (cats and dogs) is also a frequency question, again about a mass phenom-
enon. Beware: this question has a catch, which we shall return to later in the chapter.  

  Frequency 
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  Propensity 

 For a true frequentist, it makes no sense to ask for the probability of a single event 
such as how likely you are to win a game of chance, because the only objective 
probabilities are frequencies – things that have actually happened – and frequen-
cies cannot be derived from one-off observations or events that have not yet 
occurred. Nor can frequencies have any ‘power’ to infl uence a single observation: 
suppose there are twice as many dogs as cats in your area, does that fact determine 
in any way the species of the next pet you see? How could it? But everyone has a 
strong feeling that we can give such odds: we do feel that the next animal is more 
likely to be a dog than a cat. This clash of intuitions was addressed by the cele-
brated philosopher of science, Karl Popper (1959a), who introduced the  propensity 
theory . He needed to do so because of single events in physics, such as those 
predicted by quantum mechanics. The probabilities of such events must, he 
thought, be objective, but they could not be based on frequencies. 

 Dr Scale’s second question is about propensity: note that it asks you specifi -
cally about a single event, the next throw, whereas Question 1 was more general. 
Popper used a dice game example when he tried to solve the intuitive riddle 
just described (i.e. an example involving logical possibility). Consider two dice, 
one fair and one weighted so that it is biased in favour of showing a 6 when tossed: 
it tends to show a 6 on one-third of the throws (i.e. twice as often as it would 
if unbiased). Suppose we have a long sequence of dice throws, most involving 
the biased die with occasional throws of the fair one. Take one of these fair 
tosses. What is the probability that it will show a 6? Popper argued that a frequen-
tist would have to say 1:3, because the ‘collective’ set of throws has produced this 
frequency. However, you and I know that it must be 1:6, because we are talking 
about the fair die, and fair dice will tend to show each of their six sides with the 
same frequency. 

 Popper’s solution was to appeal to the difference in causal mechanisms 
embodied in the two dice to resolve this paradox: the collective really consists of 
two sub-collectives that have been produced by two different generating condi-
tions. The biased die has the  propensity  to show a 6 more often than a fair die does 
because of its different causal properties. (We shall look in detail at causal thinking 
in  Chapter 4 .) 

 There are problems with propensity theories (others have come after Popper), 
one of which is that invoking causal conditions just replaces one set of problems 
with another. In the real world, it can be very diffi cult to produce the same gener-
ating conditions on different occasions, as all psychology students know from the 
discussion of confounding variables in their methodology courses. If it is not realis-
tically possible to repeat these conditions, then is an objective single-event prob-
ability therefore also not possible? And if so, what is the alternative?  

  Degree of belief 

 We have strong intuitions about the probability of single events, so the alternative 
to objective probabilities must be subjective probabilities, or  degrees of belief . 
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Look at Dr Scale’s fi fth question. If you have heard of the Loch Ness Monster, you 
will have some view as to how likely it is that it really exists. However, this cannot 
be based on a logical possibility, nor can it be based on a frequency: there is not a 
‘mass’ of equivalent Scottish lochs, some with monsters and some without. Perhaps 
you can even assign a number to your belief, and perhaps you use objective facts in 
doing so, to do with the known biology and ecology of the species that you presume 
the beast to be. But your degree of belief can only be subjective. 

 Now look at Dr Scale’s fourth question, about the weather forecast. Weather 
presenters often use numbers in this way, but what do they mean? Once again, it is 
hard to see how this can be a logical possibility: weather is not a series of random, 
equivalent events, even in Britain. Could it then be a frequency? If so, what of? This 
particular date in history, or days when there has been a weather pattern like this? 
Baron (2008) uses weather forecasts as an example by which we can assess how 
well someone’s probabilistic beliefs are  calibrated . That is, if someone says that 
there is a 30% chance of rain, and it rains on 30% of days when she says this, then 
her judgment is well calibrated (this is another kind of frequency). This may be 
useful information about the climate, but it is not a useful attitude to weather fore-
casting: we want to know whether to cancel  today’s  picnic, a single event. And if the 
forecaster said 30%, and it rained today, isn’t she more wrong than right? She 
implied that there was a 70% chance that it would not rain. Thus you can be well 
calibrated in frequency terms but hopeless at predicting single events. 

 Confusion over the use of percentages like this was addressed by Gigerenzer, 
Hertwig, van den Broek, Fasolo and Katsikopoulos (2005), following up an earlier 
study by Murphy, Lichtenstein, Fischhoff and Winkler (1980). First of all, they set 
the normative meaning of this fi gure: that there will be rain on 30% of days where 
this forecast fi gure is given. So they are adopting the frequentist approach. They 
tested people’s understanding of the fi gure in fi ve different countries, varying 
according to how long percentage forecasts had been broadcast. The range was 
from almost 40 years (New York, USA: they were introduced there in 1965) to 
never (Athens, Greece). The prediction was that the degree of ‘normative’ under-
standing would be correlated with length of usage of percentage forecasts. It was. 
Alternative interpretations produced by participants were that the 30% fi gure 
meant that it would rain for 30% of the time, or across 30% of the region. Note, by 
the way, that even among the New Yorkers about one-third did not give the ‘days’ 
interpretation. And keep in mind that people listen to weather forecasts to fi nd out 
about particular days, not climatic patterns. Gigerenzer et al. urge that forecasters 
be clear about the  reference class  when giving numerical probabilities. This is an 
important issue that we shall return to in a short while. 

 By the way, my degree of belief in the Loch Ness Monster is close to zero. If, 
as most of its publicity says, it is a plesiosaur (a large aquatic reptile of a kind that 
existed at the end of the Cretaceous period, 65 million years ago), we would have 
to have a breeding population. They were air breathers – heads would be bobbing 
up all over the place. They would not be hard to spot. 

 Of course, our beliefs in rain or monsters can be changed if we encounter 
some new evidence. You go to bed with a subjective degree of belief in rain 
tomorrow at .3, and wake up to black skies and the rumble of thunder: that will 
cause you to revise it.  
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  Belief revision: Bayes’ rule 

 The subjective view of probability opens up a range of theoretical possibilities, 
which all come under the heading of the  Bayesian  approach to cognition. It is hard 
to overestimate the infl uence of this perspective at the present time (see Chater & 
Oaksford, 2008, for a recent survey), and we shall see it applied to theories of 
reasoning in later chapters. Most of the rest of this one will be concerned with 
Bayesian matters in some form or other. The word ‘Bayesian’ comes from Thomas 
Bayes, an 18th century English clergyman who laid the foundations for this area in 
a paper published after his death (Bayes & Price, 1763/1970). It is one of the most 
infl uential papers in all of science. 

 To illustrate Bayesian belief revision, Dr Scale has another question for you:

   8   Inspector Diesel and his sidekick, Sergeant Roscoe, are on the trail of noto-
rious Dick Nastardley, who is on the run. They know that he is often to be 
found in his local pub, the Ham & Pickle, on Friday nights – about 80% of the 
time, they understand.  

  It is Friday, and Diesel and Roscoe are outside the Ham trying to see 
whether Dick is inside. They can only see half the bar, and he is not in that 
half. So, what is Diesel’s estimate of the probability that if he and Roscoe raid 
the pub, they will fi nd their man and nab Dick?    

 Bayes’ rule produces a precise numerical estimate of this kind of probability. It 
enables us to compute the probability of a hypothesis when given some evidence: 
a conditional probability. In doing so, we start off with some  prior knowledge  that 
the hypothesis is true, before the evidence comes in. This can be combined with 
the  likelihood  of the evidence, given this hypothesis and any alternative hypoth-
eses. These numbers can be combined to derive an estimate of the  posterior prob-
ability  that the hypothesis is true, given the evidence. 

 Question 8 provides you with all the information you need to compute 
Diesel’s degree of belief that Dick is in the bar. The prior probability is his existing 
belief (based on a frequency) that he is in the bar – 80%, or .8. The alternative 
hypothesis – there is only one in this case – is that he is not there: Diesel holds this 
at .2. Now comes the evidence, or data: Dick is not in the visible half of the bar. If 
he were in the Ham & Pickle, the probability that he would not be visible is obvi-
ously .5, because he could be in the half that is visible or the half that is out of sight; 
if he were not there, this probability must be 1: he could not be in either half. 

 In  Table 1.1 , you can see a formula for Bayes’ rule (there are different 
versions, but I shall just use this one) and how these numbers are plugged into it. 
The result is a posterior probability of .67. That is, Diesel’s degree of belief is now 
lower than it was before they looked in through the windows, when it was at .8. 
That makes sense: Dick was  not  in the half they could see, which must reduce 
Diesel’s confi dence. However, there is still a greater than .5 probability that Dick is 
in there. The two sleuths now have a decision to make. We shall review the kinds 
of thinking that they might use to make it in  Chapters 8  and  9 . 

   In the rest of this chapter, we shall look at the research evidence on what 
people do when they think about probability, and at how this performance has been 
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explained. We shall look fi rstly at ‘plain’ probability judgments, where people are 
asked to estimate likelihoods or frequencies, and then go on to belief revision, where 
we address the question of the degree to which people like you, me and Inspector 
Diesel are good Bayesians when we update our beliefs. So we shall be comparing 
normative (Bayesian) theory and descriptive accounts of human performance.   

  Table 1.1     Inspector Diesel’s belief revision, using Bayes’ rule  

The Bayesian formula:

    prob (H|D) =  prob(D|H) × prob(H)
 [prob(D|H) × prob(H)] + [prob(D|¬H) × prob(¬H)]

prob(H): Diesel’s prior belief that Dick is in the Ham & Pickle 80% of the time, i.e. .8
prob(¬H): the prior probability of his alternative hypothesis that Dick is not 
 there, i.e. .2
D: Dick is not in the visible half of the bar
prob(D|H): the likelihood that he is not visible, given Diesel’s hypothesis, i.e. .5
prob(D|¬H): the likelihood that he is not visible, given the alternative hypothesis, i.e. 1

    prob (H|D) =  .5 × .8 = .4 = .67 [.5 × .8] + [1 × .2]   .4 + .2 

  Judging plain probabilities 

 Dr Scale’s fi rst seven questions are about these, and you will be able to recall 
having thought about, or being asked about, similar probabilities many times. 
What are your chances of dying in an air crash compared to a car crash, or being 
struck by lightning? These questions are not always as easy to answer as they fi rst 
appear, and explaining how we answer them is not always easy either. 

  Logical possibilities 

 People usually have a secure grasp of simple problems such as the ace of spades 
one above: in the classroom, I have not come across any people who have been 
truly baffl ed by questions like this. However, there is a sting in the tail even with 
these, and it is to do with people’s understanding of randomness and what it implies 
for expected frequencies. People seem to assume that an equal chance means that 
there will be an even distribution, and are more surprised than they should be 
when the resulting pattern actually looks quite lumpy. 

 Here are two examples, one involving mass phenomena and one involving 
repetitive events. The fi rst is quoted by Blastland and Dilnot (2007), in their splendid 
popular statistics book: cancer clusters. It is quite common to read in the press that 
there is anxiety about a higher than average incidence of cancer in some locality, 
sometimes following a change in the environment, such as the siting of a phone 
mast. With something as serious as cancer, people naturally want to know what 
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might have caused it. When there is no known cause, they will advance hypothetical 
causal models, such as possible carcinogenic properties of the radiation emitted by 
phone masts. (The World Health Organization, in 2009, advised that there is no 
convincing evidence that these induce or promote cancer, or any other illness.) They 
may even take action, such as sabotage, as Blastland and Dilnot report. But suppose 
cancer were distributed in the population at random, with respect to phone masts 
(we know quite a bit about actual causal mechanisms for some cancers, of course): 
what would the patterns of this distribution look like? They would not be even: that 
really would tell you that something fi shy was going on. They would be lumpy: some 
areas would report a much higher incidence than average, some lower – they might 
even be right next door to each other. With real games of chance, such as coin 
tossing, people are uncomfortable with clusters of more than three, whereas ‘lumps’ 
of fi ve or six heads or tails are quite common. Blastland and Dilnot report three sets 
of 30 coin tosses: there were three runs of fi ve or six heads or tails in these sets. 

 The second example comes from the psychological literature, and was 
reported in a famous paper by Gilovich, Vallone and Tversky (1985), concerning 
people’s beliefs about the ‘hot hand’ in US basketball players. This is a version of 
the general notion of ‘form’ in sports performers: that during a period of good 
form, a player is more likely to hit following a hit compared to following a miss than 
would be expected by chance. People strongly believe in form, and will swear that 
this elusive property is causing a higher than normal probability of hits. However, 
Gilovich and colleagues found no evidence for this effect in several studies of 
players’ actual performance when they looked at the conditional probabilities of 
hits following hits and misses. What is happening, they say, is that people are obliv-
ious of the statistical effect of  regression to the mean . Each player will, over the long 
term, produce a personal average hit rate. In the short term, there will be devi-
ations from this mean that are essentially random, and these deviations will some-
times occur in lumps. Just as with the cancer clusters, people then produce a causal 
hypothesis, form, to ‘explain’ the effect. 

 The  gambler’s fallacy  is the most extreme version of this error. Think again 
about coin tosses, and suppose that there has been a run of fi ve heads. It is quite 
common for people to believe that there is therefore a high probability of tails on 
the next throw, but, as the saying goes, the coin has no memory. The  logical possi-
bility  of tails is still .5; this gives an  expected frequency  of 50/50, which is what it will 
approach in the long run. People who fall for the gambler’s fallacy or the hot hand 
hypothesis are confusing the one for the other. 

 Alter and Oppenheimer (2006) review numerous studies of the hot hand 
fallacy and show how it and the gambler’s fallacy can be seen as two sides of the 
same coin (forgive me). The hot hand idea incorporates the notion of skill as a 
causal mechanism, so that when there is a long streak of one particular outcome, 
such as hits, people expect the streak to continue. However, when the streak comes 
from a random, skill-free process such as coin tossing, people expect the streak to 
end, so that the general sequence balances out. An exception occurs with gamblers 
playing roulette or dice games in casinos: these are random processes and yet 
people do often believe in hot hands when gambling. This shows that gamblers 
have mythical beliefs about the processes that generate outcomes at the tables – a 
very dangerous state of affairs for the gambler, but a very happy one for the house.  
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  Frequencies 

 We are now going to see how people approach Dr Scale’s Questions 4, 6 and 7 and 
similar ones. One thing we can ask is how well calibrated people’s estimates are 
compared to the statistical facts. We have already seen that there is a complication, 
which Question 4, about the weather forecast, brought out, and which applies 
when we try to use frequency expressions to convey single-event probabilities: you 
can be well calibrated in frequency terms but useless as a forecaster. Question 6, 
about robberies, is different. Now you are being asked a frequency question: how 
often do two things happen? 

 Evidence that people deviate from statistical norms comes from a classic 
piece of research by Lichtenstein, Slovic, Fischhoff, Layman and Combs (1978; see 
also Lichtenstein, Fischhoff & Phillips, 1982). They asked Americans in the 1970s 
to estimate how many deaths in the USA were due to various causes, such as 
different forms of disease, accidents, natural events (such as fl oods) and crime. 
People tended to overestimate the likelihoods of very uncommon events, such as 
deaths from botulism (a kind of food poisoning caused by infected meat), but 
underestimate the likelihoods of deaths from common causes, such as heart 
disease. As Baron (2008) points out, you would expect this kind of pattern anyway, 
given that people make mistakes: if something never actually happens, but some 
people think it does, its prevalence will come out as overestimated. The same will 
occur at the top end: anyone who mistakenly thinks that something does not 
happen, when it happens a lot, will pull down its average estimate. 

 There is a particular and very important diffi culty with estimating 
frequencies: the  reference class  to which the event in question is being compared; 
this was mentioned earlier when discussing numerical weather forecasts. 
Remember that probability as frequency is reckoned by the number of times the 
event happens compared to the number of times it could have happened. This 
estimate clearly depends crucially on the latter number, so what should that 
number be? 

 Consider someone’s chances of being struck by lightning. According to the 
BBC’s weather website (accessed in October 2009), a Briton has a 1 in 3 million 
chance of being struck by lightning, and they make the point that this is a much 
higher chance than of winning the lottery jackpot (see above). However, it is hard 
to make sense of this claim without knowing what the 3 million refers to. This is the 
reference class problem. Probing further on the web, I found that about 50 people 
are struck by lightning in Britain every year (about 5 are killed). With a population 
of around 60 million, this is a strike frequency of about 1 in 1.2 million. But that is 
just in 1 year. In the USA, the 1-year risk is said to be 1 in 700,000, with a lifetime 
risk of 1 in 5000. However, even when we are clearer about such fi gures, we still do 
not have a clear reference class. These are the fi gures for national populations, and 
nations are made up of different kinds of people. Compare the chances of farm 
workers and miners: the former are obviously much more likely to get struck (one 
British agricultural worker has been struck seven times in 35 years). And if you live 
in Uganda, take especial care with your life insurance: Uganda has the most light-
ning storms of any country. So to judge your own chances of being struck, you 
need to know which class you belong to: there is a lot of difference between British 
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miners and Ugandan farmers in this respect. We shall come back to the reference 
class problem when we deal with belief updating.  

  Taking samples: where our information comes from 

 Think about Dr Scale’s Questions 6 and 7 again, about street robberies and dogs 
and cats. People readily give responses to this kind of question, but what are they 
basing these responses on? There are two possibilities: prior knowledge and 
current information. We shall concentrate on the former, since that is where most 
of the research has been done. I doubt whether, when thinking about street 
robberies, you retrieved offi cial government statistics, or, when thinking about 
dogs and cats, you had actually gone round your neighbourhood with a clipboard 
counting them up. So what did you use as the basis of your estimates? 

 The most infl uential answer to this question was proposed by Daniel 
Kahneman and Amos Tversky in an extensive research programme that has been 
compiled into two large volumes (Gilovich, Griffi n & Kahneman, 2002; Kahneman, 
Slovic & Tversky, 1982). You use some kind of  heuristic . A heuristic is a rough rule 
of thumb, as opposed to an algorithm, which is a set of exactly specifi ed steps. If 
you are cooking, and faithfully following a recipe, you are using an algorithm; if you 
are vaguely tossing handfuls of this and that into the mixing bowl, you are using 
heuristics. The heuristic that applies to Dr Scale’s two questions is  availability , 
introduced by Tversky and Kahneman (1973). This is their own defi nition: ‘A 
person is said to employ the availability heuristic whenever he estimates frequency 
or probability by the ease with which instances or associations could be brought to 
mind’ (p. 208). They add that you do not actually have to bring examples to mind, 
just estimate how easy it would be to do so. Thus one estimate, ease of thinking, is 
used to stand for another, probability. 

 Tversky and Kahneman argue that such a heuristic is ecologically valid (i.e. 
is true or useful in the real world), because if something is common it should be 
easy to recall instances of it. However, in some circumstances, its use can lead to 
biased estimates. This will happen if something other than frequency has led to 
availability. This is why Kahneman and Tversky’s research has come to be known 
as the  Heuristics and Biases  programme. It is as if the mind commits a logical fallacy 
(we shall deal with these in  Chapter 3 ): given that  If something happens often then 
examples will be easy to recall , and  I can easily recall an example , you infer  therefore 
it is happening often . This would only be valid if nothing else led to ease of recall. 
The observation of such biases would be crucial evidence that people use heuris-
tics when judging probability. 

 This prediction was confi rmed in a series of experiments, the hallmark of 
which is their ingenuity and simplicity (see Part IV of the Kahneman et al., 1982 
volume and Part One of the Gilovich et al., 2002 volume for collections of these 
studies). Here is an example from Tversky and Kahneman’s original 1973 paper. 
They chose the letters, K, L, N, R and V, and asked 152 people to judge whether 
each was more likely to appear as the fi rst letter or as the third letter in a sample of 
English text. More than two-thirds (105) thought that the fi rst position was more 
likely for a majority of the letters. In fact, all the letters are more common in the 
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third position. The availability heuristic would predict this since we are far more 
used to thinking about initial letters, such as in alphabetical name lists, than third 
letters. In the same paper, they gave people two lists of names. In one there were 19 
women and 20 men, and in the other, 19 men and 20 women. In both cases, the 19 
names were famous and the 20 were not. When asked to estimate which were more 
frequent in the lists, men or women, the participants reported that there were more 
women in the fi rst list and more men in the second – the opposite of the truth. They 
were biased by the greater ease of recalling the famous names, as was confi rmed in 
a memory test when they recalled 50% more of these than the unfamiliar names. 

 Evidence that availability can affect more real-life judgments comes from a 
study by Ross and Sicoly (1979). It concerned people’s perceptions of their share of 
the credit when they have joint responsibility for some event or activity: students 
will think about this when doing group projects, for instance, and sports team 
members will ponder who contributed most to their team’s performance. Ross and 
Sicoly studied married couples, thinking about 20 household events (19 for those 
without children): who did each partner think did the most of each? He and she 
both thought they made a greater contribution to most of the events, including 
negative ones such as starting arguments. They cannot both be right. Ross and 
Sicoly ruled out a motivational bias, because the effect occurred with both good and 
bad events. The availability explanation is that your own contributions are simply 
easier to remember: you are always there when you do something, but not when 
your partner does, and you may also attach greater signifi cance to your own deeds. 

 Anything that makes an event easy to bring to mind should increase our judg-
ment of its probability whether or not it has anything to do with frequency, according 
to availability. An example is  vividness : how much impact does the information make 
on you? Nisbett and Ross (1980) devote a whole chapter of their classic book to this 
factor. The street robbery question above was designed to illustrate it. If you thought 
that old ladies are more often victims than young men are, you may well have 
thought so because you could easily call to mind vivid instances: you may have seen 
news stories with graphic pictures, and these are not easy to forget. The mem -
orability of such stories may in turn be due to a factor that Nisbett and Ross iden tify 
as contributing to vividness: emotional impact. Proximity in time or space is another: 
for instance, if the houses on either side of yours have noisy dogs in them. 

 They also point out that vivid information is usually more information, for 
instance in the reporting of an elderly crime victim, where a lot about the person 
and the circumstances of the crime will be given. Celebrity illness is another 
instance of this: it was observed by Nisbett and Ross over 30 years ago, and can be 
observed today, that a famous person reported as suffering from a particular 
disease leads to a fl ood of people seeking tests for that disease. Politicians and 
commentators know all about vividness: you will often hear them invoking single 
striking cases to attack an opposing view, when the statistics actually back up that 
view. Nisbett and Ross sum up the vividness factor with a chilling quote attributed 
to the Soviet dictator Josef Stalin: that a single death is a tragedy, while a million 
deaths is a statistic. 

 There is another way in which factors such as vividness could affect proba-
bility judgment without the availability heuristic: they could bias the sample on 
which you base your judgment. Think of the news reports of elderly crime victims: 
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how often do such stories appear, compared to stories about young male victims? It 
is possible that, when making the kinds of judgments that Question 6 called for, you 
are responding accurately to the sample that the media present you with. News 
stories are often about unusual occurrences – that is what makes them news – and 
so the unusual will come to be represented more often in current experience and 
memory than it should be, statistically speaking. This would explain the apparent 
bias in people’s assessments of likelihood of death from various causes: they will 
overestimate rare causes because they are talked about more than common causes, 
and underestimate common causes for the same reason. Similarly, consider Ross 
and Sicoly’s married couples. Perhaps each thinks they do more than the other 
simply because they observe more of their own contributions than their partners’. 

 Klaus Fiedler (2000), in an extensive survey, makes the point that our judg-
ments are always based on samples, and that if the sample that is presented to us 
is biased, as with sexy stories in the media, then so will our judgments be, espe-
cially if our judgment processes themselves tend to be accurate. The bias is in the 
sample, not in the mind. What we need in order to evade bias is a skill that seems 
very hard to acquire: that of critically assessing the nature of sampling. The letter 
task (K, L, N etc.) used by Tversky and Kahneman (1973) in their initial proposal 
of availability (see above) was criticised on sampling grounds by Sedlmeier, 
Hertwig and Gigerenzer (1998). They point out that the set of letters used in this 
study was a biased sample of letters of the alphabet: all fi ve are more common in 
the third position in English words, whereas 60% of all consonants are in fact more 
common in the fi rst position. Sedlmeier et al. proposed that people would be sensi-
tive to the relative frequencies within the whole class of consonants, while tending 
to underestimate the most common letters and overestimate the rare ones, as in 
the death estimates in the Lichtenstein et al. (1978) study reviewed earlier. A model 
based on this hypothesis predicted people’s judged ordering of frequencies of 13 
letters in German words better than did two versions of the availability heuristic. 
We shall come back to the question of sampling later in the chapter. 

 The notion of availability was elaborated in later work by Tversky and his 
colleagues, in the form of  support theory . Tversky and Koehler (1994; see also 
Rottenstreich & Tversky, 1997) distinguished between the event itself and mental 
representations (or descriptions, of events) which they called  hypotheses . When 
you judge a hypothesis, you consider the weight of evidence for it: its support. 
Hypotheses can be explicit or implicit. For instance, suppose you were asked to 
judge how many people die each year of natural versus unnatural causes. You are 
given heart disease, cancer and other natural causes to assess; or accident, homi-
cide and other unnatural causes. In each case, the named causes are explicit 
hypotheses and ‘other’ is an implicit hypothesis. Explicit mention of factors such as 
accident or homicide provides cues to search for support that are absent from the 
implicit hypothesis: it is hard to search for ‘other’. 

 Both earlier research and experiments run by Tversky and Koehler (1994) 
showed that when implicit hypotheses are unpacked into explicit components and 
their probabilities judged, the sum of judgments of the explicit hypotheses is 
greater than the judgment of the implicit hypothesis. This is called  subadditivity : 
the implicit support comes to less than the quanta of explicit support when you add 
them up. It follows from this that the degree of subadditivity should be greater 
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when there are more unpacked explicit components. Objectively, of course, there 
should be no difference: ‘natural causes’ should just be the sum of all the causes 
that come into this category. Both tendencies, subadditivity and its increase, were 
confi rmed by Tversky and Koehler (1994). In one experiment, they asked US 
students to estimate the probability of death from various causes, either by thinking 
about the probability of an individual dying from them, or by assessing the 
frequency of each from the 2 million annual deaths in the USA. These students 
assessed the probability of ‘natural causes’ as .58, but their estimates of ‘heart 
disease + cancer + other natural causes’ came to .73, a subadditivity factor of 1.26 
(i.e. .73/.58). When seven rather than three components were used, subadditivity 
was increased, as support theory predicted: the factor was now 2.19. The same 
tendencies were found for unnatural causes. 

 Interestingly, and consistent again with the fi ndings of Lichtenstein and 
colleagues (1978) mentioned earlier, the unnatural causes were greatly overesti-
mated relative to the actual frequencies of recorded causes of death. For instance, 
estimates of frequency of deaths due to accidents were around 30%, but the true 
fi gure was 4.4%. Support theory is not about people’s accuracy relative to the facts, 
but about the way they judge their  representations  of events, their hypotheses. 
These hypotheses can only be formed about what is available, hence unpacking 
and subadditivity can be affected by the sorts of factors, such as vividness, that 
infl uence availability.   

  Belief updating 

 In many everyday cases of probability judgment, we do not judge probabilities by 
themselves, but judge them in response to some information. That is, we start out 
with some estimate of belief and then have to revise it. Medicine is an obvious case: 
you have some symptom that leads you to suspect that you may have a certain 
disease, you get yourself tested, and the test result comes back. Dr Scale has one 
last problem for you to illustrate this, adapted from an example in Eddy (1982):

   9   A friend of yours went on holiday to the Costa del Sol last year and, in between 
bouts of inadvisable partying, fried in the sun on the beach for two weeks. 
Recently, he noticed a large new mole on his arm. He went to the doctor, who 
decided to test him for skin cancer. She told him that (a) in people who have 
cancer, the test shows positive in 90% of cases, while (b) the false positive 
rate, where people without cancer test positive, is 20%. People with new 
moles like your friend’s actually turn out to have cancer 1% of the time 
(c). Your friend is shaken: his test has come out positive. He wants you to tell 
him what the probability is that he has cancer. What is your answer?    

 Give a quick estimate before going on: that is what your friend did. And then work 
it out. As with the Diesel and Roscoe problem (Question 8) earlier, you have all the 
information in front of you to work out a precise numerical answer, using Bayes’ 
rule, which was given in  Table 1.1 . To help you along, the prior probability that he 
has cancer, prob(H), is .01 (c above). The probability that he will test positive if he 

http://www.psypress.com/thinking-and-reasoning-9781841697413

http://www.psypress.com/thinking-and-reasoning-9781841697413


J U D G I N G  A N D  T H I N K I N G  A B O U T  P R O B A B I L I T Y

15

has cancer, prob(D|H), is .9 (a), while the probability that he will test positive even 
though he is clear, prob(D|¬H), is .2 (b). You can now put these numbers into the 
Bayesian formula in  Table 1.1  and work out the posterior probability, prob(H|D), 
that he has cancer given a positive test result. It will do you good if you do, but 
 Table 1.2  shows the workings if you want to check or avoid it. 

 The answer is that prob(H|D) = .043, or just over 4%. Or to put it another way, 
the probability that he does not have cancer is .957: he almost certainly does not 
have it, even though he tested positive. The test therefore is useless. 

   You probably fi nd that result surprising, and your friend may take some 
convincing of it too. This intuition is a clue as to why there has been a huge volume 
of research into belief updating. If your initial estimate was around .9, which is the 
result many people give, you have committed the  inverse fallacy  (Koehler, 1996): 
you have given prob(D|H) instead of prob(H|D). There are two reasons why the 
latter fi gure is so low: the false positive rate of 20% is high, and the prior probability 
of .01 is low. The latter is known as a  base rate : the amount of the disease that there 
is in this population to begin with. It looks as if people tend to neglect base rates 
with problems like this. Base rate neglect is the most researched aspect of belief 
updating, so we shall begin our detailed examination of this kind of judgment with 
it. If you found the Bayesian descriptions above rather hard going, rest easy: later 
on you will see a method that makes deriving the answer to problems like this 
much clearer – not just for people like you and me, but for experts such as doctors 
too. The method in question is at the very heart of debates about just how people 
revise their beliefs, and what determines their accuracy when they do so. 

  Table 1.2     Bayesian answer to the skin cancer problem  

The test shows positive in 90% of cases in patients who have cancer: prob(D|H) = .9
The test shows positive in 20% of cases in patients who do not have cancer: 
 prob(D|¬H) = .2
1% of people like this patient actually have cancer: prob(H) = .01

Using Bayes’ rule from Table 1.1:

    prob (H|D) =  .9 × .01 = .009 = .009 = .043 [.9 × .01] + [.2 × .99]   .009 + .198  .207

  Base rates: neglect or respect? 

 The medical problem just given shows that it is possible to induce people to neglect 
base rates when updating belief in the light of evidence. Eddy (1982) actually tested 
doctors with this kind of medical problem. You might imagine they would be less 
prone to base rate neglect than non-medics in this context. They were not. This 
rather alarming state of affairs shows how potentially important base rate neglect is. 

 As with so much research in this area, the modern study of base rate neglect 
was kick-started by Kahneman and Tversky in the 1970s. Neither they nor Eddy 
invented the diagnosis problem (credit for that goes back to Meehl & Rosen, 1955), 
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but characteristically they did introduce some striking new experiments and, 
equally importantly, a provocative theory to account for their fi ndings. Both their 
methods and their theory have generated hundreds of research papers and 
volumes of debate, culminating in two major reviews in the journal  Behavioral and 
Brain Sciences , by Koehler (1996) and Barbey and Sloman (2007); each paper is 
followed by dozens of commentaries from other experts. 

 Kahneman and Tversky (1973) introduced one kind of problem that has 
formed part of the bedrock of research into base rate neglect: the personality 
problem. It comes in two guises. In the fi rst, participants were told about a 
room full of 100 people, some of whom are engineers and some lawyers. They were 
given a personality description of an individual said to have been picked at random 
from the hundred, and asked to judge whether it is more likely that he is an 
engineer or a lawyer; the description was designed to resemble the stereotype of 
engineers, say. One group of participants was told that there were 70 lawyers 
and 30 engineers in the room, while another group had the fi gures reversed, so 
that there were 30 lawyers and 70 engineers. These were the base rates, and 
they should have infl uenced judgments: the random person is more likely to be 
an engineer than a lawyer in the second group than the fi rst. But they made no 
difference: each group’s judgment of how likely the random man was to be an 
engineer was the same. 

 In the second version, 69 students were asked to estimate the percentage of 
students across the country studying nine academic subjects. This provided the 
base rates, as they were understood by these participants. A second group drawn 
from the same student population was given a personality description of ‘ Tom W.’, 
portraying him as something of a nerd, and asked how similar he was to the typical 
student in each of the nine fi elds. Finally, a third group was told about Tom and 
asked to predict which fi eld of study he was likely to be involved in. Their predic-
tions correlated almost perfectly with the second group’s similarity judgments, and 
were negatively related to the fi rst group’s base rate judgments. For instance, 95% 
of the prediction group judged that Tom was more likely to be studying geeky 
computer science than Bohemian humanities and education, but the base rate of 
the latter was three times that of the former. 

 Faced with these results (and others), Kahneman and Tversky proposed that 
the people were using a non-statistical heuristic to arrive at their judgments:  repre-
sentativeness . This word is related to ideas such as similarity and resemblance. In 
an earlier paper, they defi ned representativeness in this way:

  A person who follows this heuristic evaluates the probability of an uncertain 
event, or a sample, by the degree to which it is: (i) similar in essential proper-
ties to its parent population; and (ii) refl ects the salient features of the process 
by which it is generated. 

 (Kahneman & Tversky, 1972, p. 431).   

 The personality tasks are to do with (i): people are noting the similarity between 
the individuals described and the typical features of a stereotyped engineer or 
computing student. These are the parent populations, as far as the participants are 
concerned. 
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 The second kind of representativeness was explored using perhaps the best 
known base rate task of all, the taxicab problem. Here it is:

  A taxi is involved in a hit-and-run accident at night. In the city, there are two 
taxi fi rms, the Green Cab Company and the Blue Cab Company. Of the taxis 
in the city 85% are Green and the rest are Blue. 

 A witness identifi es the offending cab as Blue. In tests under similar 
conditions to those on the night of the accident, this witness correctly 
identifi ed each of the two colours 80% of the time, and was wrong 20% of 
the time. 

 What is the probability that the taxi involved in the accident was in 
fact Blue?   

 We pause here for you to work out the Bayesian answer. If you need some help, 
look at  Table 1.3 , where, as with the Diesel and Roscoe and diagnosis problems, 
the numbers just given are put into the Bayesian formula. 

 We are trying to work out the probability that the taxi was Blue given that the 
witness said it was Blue: prob(H|D). For that, we need the prior probability, 
prob(H), that the cab was Blue. From the problem description we can infer this to 
be .15, the fi gure for ‘the rest’ once the 85% Green taxis are taken into account. Now 
we need the data, D. This is the witness’s testimony, and he or she was 80% accu-
rate. So we compare the times when the witness says Blue and it really is Blue to 
the times when he or she says Blue and it is actually Green, taking into account the 
proportions of Blue and Green cabs. 

 In  Table 1.3  you can see these various bits of information put into the 
Bayesian formula. The result is that the posterior probability that the cab was in 
fact Blue is .41 which means that, on these fi gures, the cab was actually more likely 
to be Green (.59)! 

 Tversky and Kahneman (1982a) report data from experiments in which 
people were given the taxicab problem. They report that, like the personality prob-
lems, judgments were largely unaffected by base rate: most were around .8, which 
is the fi gure for the witness’s accuracy, and is prob(D|H). This is a case of what 

   Table 1.3     Bayesian answer to the taxicab problem  

What is the probability that a taxi involved in an accident was Blue, given that a 
witness identifi ed it as Blue: prob(H|D)?
The city’s cabs are 85% Green and 15% Blue: prob(H) = .15, prob(¬H) = .85
The witness is accurate 80% of the time and mistaken 20% of the time
prob((D|H), that the witness says Blue when the cab is Blue, is therefore .8
prob(D|¬H), that the witness says Blue when the cab is Green, is .2
Using Bayes’ rule:

 
 .8 × .15prob(H|D) =

 [.8 × .15] + [.2 × .85]

 .12
.12 + .17

 .12
 .29

= = .41=
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Kahneman and Frederick (2002) call  attribute substitution , as is the use of the avail-
ability heuristic: we answer a question to which the answer is inaccessible by 
addressing another one, whose answer is more accessible. In the availability prob-
lems we think about recallability: in the cab problem we think about the witness’s 
reliability. 

 Base rate neglect is in fact only one facet of the inverse fallacy. With base rate 
neglect, people are underweighting prob(H), but, as Villejoubert and Mandel 
(2002) point out, the inverse fallacy also involves neglect of prob(D|¬H) – the false 
positive rate in the diagnosis problem, or the witness’s mistaking Green cabs for 
Blue in the taxicab problem. In an experiment, they showed that judgments varied 
according to the degree of difference between prob(H|D) and prob(D|H) with 
base rates held constant, thus confi rming that the inverse fallacy and base rate 
neglect can be teased apart. We shall return to other aspects of the inverse fallacy 
shortly, when we consider a radical alternative proposal to Kahneman and Tversky’s 
heuristics in explaining belief revision. We shall turn from medicine to the law 
when we do so.  

  Belief revision by natural frequencies 

 Are you still worried about those doctors that Eddy (1982) tested, who were just as 
bad at judging the probability that a patient has a disease, given a positive test result, 
as you were? Relief is at hand. Eddy gave his medical participants Bayesian prob-
lems described in the way they have been here: in words. Think about the relation 
between these word problems and probability judgments in real life. Two differ-
ences jump out straight away: the words themselves – is this the way real people talk 
about probability?; and the data the problems present – in real life, we don’t often 
encounter summary statistics, but build up our representation of the statistical 
world bit by bit. This is called  natural sampling . Might doctors do this? Christensen-
Szalanski and Beach (1982) found evidence that they do: doctors who learned the 
relation between the base rates of disease and the outcomes of tests through their 
clinical experience did not neglect base rates when making diagnostic judgments. 

 Natural sampling is at the core of a gigantic research programme into prob-
ability judgment, decision making and rationality conducted since the 1980s by 
Gerd Gigerenzer and his colleagues. As this list of areas implies, we shall look at 
this research not only in this chapter but in later chapters too, especially  Chapters 
9  and  10 . For the moment, let us consider the Gigerenzer approach to probability 
judgment and belief revision. 

 Gigerenzer is a frequentist, and frequentists accept only repeated observa-
tions as the basis for probability judgments; they do not accept that there is any 
coherent way to judge the probability of unique events. In his landmark paper with 
Ulrich Hoffrage, Gigerenzer gives an evolutionary justifi cation for this position:

  Evolutionary theory asserts that the design of the mind and its environment 
evolve in tandem. Assume. . . that humans have evolved cognitive algorithms 
that can perform statistical inferences. . . For what information format were 
these algorithms designed? We assume that as humans evolved, the ‘natural’ 
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format was  frequencies  as actually experienced in a series of events, rather 
than probabilities or percentages. 

 (Gigerenzer & Hoffrage, 1995, p. 686)   

 The point at the end is that probabilities (from 0 to 1) and percentages are 
recent cultural developments, whereas natural frequencies could, they propose, 
have been used by any person at any time in history. It is important to be 
clear about natural frequencies. It is not that any frequency format will make 
Bayesian belief revision easier, but that  natural  frequencies will. For instance, 
relative frequencies will not have the effect, because these are ‘normalised’ 
numbers, not instances actually encountered. Percentages, such as those you 
have just seen in the diagnosis and taxicab problems, are a form of relative 
frequency: 85 out of every 100 cabs are Green, and so on. This is not the same as 
saying that 100 cabs have been observed, of which 85 were Green. The dice-playing 
nobleman we heard about at the beginning of this chapter was using natural 
frequencies. 

 Now let us re-word the diagnosis problem set out above in terms of natural 
frequencies. Take 1000 patients who see their doctor about a new mole on their 
skin. Of these people, 10 (the 1% given in the original problem) actually have skin 
cancer. The test will give a positive result for nine of these (90% of them). There will 
be 990 people who do not have cancer, and the test will show positive in 198 cases 
(the 20% false positive rate). So what is the likelihood of cancer when given a posi-
tive test? There are 207 people with positive test results (9 + 198), of whom 9 have 
cancer; 9 out of 207 = .043. 

 That wasn’t so hard, was it? If you look back at  Table 1.2  you will see these 
fi gures, in decimal form, emerging from the Bayesian formula. It is not the fi gures 
that are different, but their representation. Gigerenzer and Hoffrage make this 
representation even clearer by using a tree diagram, and in  Figure 1.1  the diag-
nosis and the taxicab problems are represented in this way. As you can see, and as 
they emphasise, the computations needed to derive the Bayesian answer with the 
natural frequency format are very much easier than they are with Bayes’ rule itself. 
In fact, they reduce to

     
prob(H|D) = a
 a + b

 where  a  is the frequency of prob(D|H) observations – people with positive test 
results who actually have cancer, cabs identifi ed as Blue which really are Blue – 
and  b  is the frequency of prob(D|¬H) observations – positives without cancer, 
wrongly identifi ed cabs. Notice what is missing here: prob(H), the base rate. If you 
represent these problems in natural frequency terms,  you don’t need a separate 
expression for the base rate ; since natural frequencies are derived from the base rate, 
they contain base rate information within themselves (see Kleiter, 1994, for earlier 
steps in this argument). 

 In an experiment, Gigerenzer and Hoffrage (1995) confi rmed that presenting 
problems like this (they used 15 problems, including the cab problem and various 
medical ones) in a frequency format that promoted representation of just the  a  and 
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 b  components resulted in signifi cantly more Bayesian answers than did the 
standard probability format: 50% versus 16%. 

 Bear in mind that the question their participants were asked was not the 
likelihood that a single person had a disease or that a single accident involved a 
Blue taxi: that would be asking for a single-event probability. In order to ask this, 
you really do need the base rate, because base rates depend on reference classes 
(see above): a base rate frequency is the proportion of times an event occurs out of 
the times it could have occurred. The latter part depends on the reference class. 
The trouble with this is that there are infi nitely many possible reference classes for 
any single base rate. Consider the diagnosis problem. What is the right reference 
class for your friend with the mole? Men, young men, young men who have recently 
been sunburned, young sunburned men with a particular skin type? It is impos-
sible to say. Ultimately, your friend is his own reference class. In natural frequency 
experiments, people are asked how many ___ out of ___ have the disease, were 
Blue, and so on. The blanks are fi lled in with absolute frequencies (i.e. simple 
counts of actual occurrences), which do not depend on reference classes. 

 Gigerenzer is not the only researcher to address belief revision in this way. 
Two leading evolutionary psychologists, Leda Cosmides and John Tooby (1996), 
also conducted a series of experiments on frequency formats. They used variations 
on the diagnosis problem. In their basic reformulation of the problem, they 
found that 56% of people produced the Bayesian solution with a frequency format, 
a fi gure comparable to Gigerenzer and Hoffrage’s result. However, they included 

   Figure 1.1     The diagnosis and taxicab problem in natural frequency form    
 Note: In the diagnosis problem + means prositive test, C means has cancer and ¬C means does 
not have cancer; in the taxicab problem, + means witness says Blue 

 Source: Adapted from Gigerenzer and Hoffrage (1995)  
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redundant percentages in their experiment (e.g. including the phrase ‘a “false posi-
tive” rate of 5%’ alongside the frequency of 50 out of 1000 people testing positive 
without the disease) and discovered that performance rose to 72% when this infor-
mation was removed. Using further manipulations, such as presenting the problem 
information pictorially as well as in fi gures, they raised the rate of Bayesian 
responding as high as 92%. We shall return to this particular factor below. 

 Not surprisingly, results like these, along with the theory that predicted 
them, have generated a large research literature. It is the latter, the theory, that 
explains this boom. Frequency formats had appeared in research papers before, 
sometimes to explain the problems to readers (Hammerton, 1973; Pollard & Evans, 
1983), sometimes as part of the experimental materials (Fiedler, 1988; Tversky & 
Kahneman, 1983), but Gigerenzer’s approach offered a rationale for their success 
– a rationale that has not gone unchallenged, as we shall see. 

 Gigerenzer and his colleagues have devoted enormous energy to their 
research programme, and I shall give some more examples of this work here. It 
has been collected into a series of books, for specialist and non-specialist audi-
ences. For specialist references, go to Gigerenzer and Todd (1999a) and Gigerenzer 
and Selten (2001); for more ‘popular’ treatments, try Gigerenzer (2002, 2007). 

 This work has obvious potential applications, because people need to make 
probability judgments in order to make informed decisions. We shall look closely 
at decision making in later chapters, and will return to Gigerenzer’s approach 
to it when we do so, but for now let us look at two areas in which the natural 
frequency approach has been applied in the real world: health and the law. In both 
cases, it is no exaggeration to say that probability judgment can be a matter of life 
and death. 

 In his popular book, Gigerenzer (2002) recounts a personal experience. He 
needed to take an HIV test as a condition of obtaining a work permit for the USA. 
HIV, the virus that leads to AIDS, is rather like lightning: your chances of being 
struck by it depend on who you are and what you do. So the fi rst thing to work out 
is your reference class. Gigerenzer’s was low-risk German males, to whom the 
following data applied at the time:

  Base rate: .01% 
 Test sensitivity: 99.9% (i.e. chance of testing positive if you have HIV) 
 False positive rate:  .01% (i.e. chance of testing positive even though you do 

not have HIV)   

 Now suppose such a person tests positive: what is the chance that he has HIV? You 
could construct a tree diagram like the one in  Figure 1.1 , but you hardly need to in 
this case. You can use natural frequencies in your head. Start by thinking of 10,000 
low-risk German men. How many have HIV? In frequency terms, .01% is 1 in 10,000, 
so the answer is 1. He will be detected with almost total accuracy (99.9%, or .999). 
Now think about the remaining 9999 men. The risk of testing positive is also 1: 
10,000, so we can be almost certain that there will be one misfortunate man among 
them. How many positive test results do we have then? Two, of which one is true. 
On these (real) fi gures, his chances of actually having HIV, given a positive test 
result, would be 1:2. He should take another test. 
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 The really important fi gure in making these judgments is the false positive 
rate. These can only be derived from observed frequencies because they are by 
nature unpredictable. We then need to know how to use them in our calculations. 
As just mentioned, these judgments can have the most profound consequences for 
people: there is a big difference between thinking there is just a 50/50 chance of 
having HIV and thinking it is almost certain that you have it. You might not get 
your work permit; you might, if you are sure you have HIV after testing positive, 
wind up a victim of suicide, assault or even murder (such incidents are related in 
Gigerenzer, 2002). 

 One thing you can be sure of when taking an HIV test is that you will want 
some good advice. Gigerenzer, Hoffrage and Ebert (1998) conducted a fi eld study 
of AIDS counsellors in Germany: Ebert had himself tested and counselled at 20 
health centres, presenting himself as a low-risk client. You would hope, indeed 
expect, that counsellors would know how to interpret test results. The ones in this 
study did not. Ebert asked the counsellors about a number of aspects of the test, 
such as its sensitivity and false positive rate, and, most importantly, what the result 
would mean for the likelihood that he actually had HIV, if it came out positive. Five 
of the counsellors said that the test was 100% sensitive, while thirteen were accu-
rate on this point; only three were clear about false positives from the beginning; 
while three-quarters told Ebert that he was certain or almost certain to have HIV if 
he tested positive (against the true fi gure of 50%). Needless to say, Gigerenzer 
et al. recommend that counsellors be retrained to interpret, and talk to their clients 
about, natural frequencies. 

 Now for the law. In 1999, Sally Clark, an English lawyer, was convicted of the 
murder of two of her sons. Each had been found dead in their cots when only a few 
weeks old. Part of the case against her was the testimony of an eminent paediatri-
cian, who told the court that the probability of two children in the same middle-
class family dying of sudden infant death syndrome, or SIDS (a residual category, 
not a diagnosis, arrived at after all other possible causes such as injury and disease 
have been eliminated), was 1:73 million. Clark served over 3 years in prison before 
her conviction was quashed on a second appeal in 2003. At that appeal, two sorts of 
statistical error were pointed out. Firstly, the 73 million: this was arrived at by 
multiplying the single probability of one SIDS death, about 1:8500, by itself, just as 
we did with the calculation of ‘snake eyes’ at the start of this chapter. This is a 
factual mistake: SIDS deaths are not random events. There are factors within fami-
lies that make some more prone to suffer this tragedy than others, so if there has 
been one SIDS death the probability of another is much higher than the random 
probability. Secondly, the jury might well have committed the  prosecutor’s fallacy : 
using the paediatrician’s fi gure as the probability that Clark was innocent (see 
Nobles & Schiff, 2005, for a brief account of this case). 

 The prosecutor’s fallacy is a version of the inverse fallacy: mistaking 
prob(D|H) for prob(H|D). Even if the fi gure given was correct, it is the expression 
of the probability that two children will die in this way (D) given that the alternative 
in this case – murder – has been eliminated (i.e. that the defendant is innocent 
(H)). It is  not  the probability that the defendant is innocent given these deaths. 
Jurors should have compared any such estimate with the prior probability of the 
alternative hypothesis: that two babies were murdered by their mother. This is 
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likely to be even lower. Here is a parallel, again reaching back to the start of this 
chapter. You have won the lottery, the odds against this happening being 1:13.98 
million. Someone accuses you of cheating. The odds just quoted are the odds that 
you will win (D) given that you don’t cheat (H); they are not the odds that you 
didn’t cheat given that you won. We need to know the prior probability that you 
cheated, and this is vanishingly remote, because of the design of the lottery 
machine. Jurors could no doubt see this quite readily, and yet they have fallen prey 
to the inverse fallacy in cases like Clark’s (other women have had similar convic-
tions overturned since her case) – Sally Clark died of alcoholic poisoning 4 years 
after her release from prison. 

 The inverse fallacy bedevils the use in criminal trials of the most important 
aid to crime investigation to have emerged in a century: DNA profi ling. TV dramas 
present this as a failsafe index of a suspect’s culpability, but there is no such thing 
as an infallible test. Even if there is a tiny chance of error, as in the case of the HIV 
statistics above, this must be taken into account. And these chances must be 
presented to juries in a way that their minds can handle, otherwise miscarriages of 
justice will happen. 

 Suppose that a sample of DNA is taken from a crime scene, it matches the 
suspect’s DNA profi le, and the probability that a person selected at random would 
also match the sample (the random match probability) is 1:1 million. Does that 
mean that the odds against the suspect’s innocence are a million to one? No. Once 
again, 1:1 million is prob(D|H), the probability that the sample would be found if 
the suspect were innocent, not prob(H|D), the probability that he is innocent given 
that this sample has been found. We need to know some other things in order to 
compute prob(H|D): we need the false positive rate, or prob(D|¬H), and the prior 
probability that the suspect could have been the perpetrator in the fi rst place, 
prob(H). A cast-iron alibi, for instance, drastically reduces this fi gure. And we need 
to know about the prior probability of the alternative hypothesis, that someone else 
did it. 

 Lindsey, Hertwig and Gigerenzer (2003) report a study in which over 100 
advanced law students and academics were presented with trial statistics, based on 
real cases, in frequency and probability formats. The two versions are given in 
 Table 1.4 . The fi rst two questions concern the interpretation of the statistical infor-
mation. Question 1 requires thinking about false positives, and with the probability 
version performance was appalling: hardly any of the students or academics found 
the correct answer, which is .09 (there are 110 men with a reported match, of 
whom 10 actually have a matched profi le; 10/110 = .09). These fi gures rose to 40% 
(students) and over 70% (academics) with the frequency presentation. The picture 
was almost identical with Question 2: while again the academics were better than 
the students, the difference between the probability and frequency conditions for 
both groups was massive (the probability is .0091, or 1 in 110). And the verdicts 
(Question 3)? Fifty per cent more law students and academics returned a guilty 
verdict in the probability condition. Their level of reasonable doubt was higher in 
the frequency condition. Now, imagine you are the suspect in the previous para-
graph, who happens to have a DNA profi le that matches the one found at the scene; 
there is no other evidence against you; you are, in fact, innocent. You live in or near 
London, where there are about 10 million people. This means that there will be 
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   Table 1.4     Probability and frequency versions of the DNA problem in Lindsey et al. 
(2003)  

Probability version

The expert witness testifi es that there are about 10 million men who could have been 
the perpetrator. The probability of a randomly selected man having a DNA profi le 
that is identical with the trace recovered from the crime scene is approximately 
0.0001%. If a man has this DNA profi le, it is practically certain that a DNA analysis 
shows a match. If a man does not have this DNA profi le, current DNA technology 
leads to a reported match with a probability of only 0.001%.
A match between the DNA of the defendant and the traces on the victim has been 
reported.
Question 1.  What is the probability that the reported match is a true match, that is, 

that the person actually has this DNA profi le?
Question 2. What is the probability that the person is the source of the trace?
Question 3. Please render your verdict for this case: guilty or not guilty?

Frequency version

The expert witness testifi es that there are about 10 million men who could have been 
the perpetrator. Approximately 10 of these men have a DNA profi le that is identical 
with the trace recovered from the crime scene. If a man has this DNA profi le, it is 
practically certain that a DNA analysis shows a match. Among the men who do not 
have this DNA profi le, current DNA technology leads to a reported match in only 
100 cases out of 10 million.
A match between the DNA of the defendant and the traces on the victim has been 
reported.
Question 1.  How many of the men with a reported match actually do have a true 

match, that is, that the person actually has this DNA profi le? [sic]
Question 2.  How many men with a reported match are actually the source of the 

trace?
Question 3. Please render your verdict for this case: guilty or not guilty?

10 people from this region who match: you and nine others. The odds on your 
innocence are 9:1, not 1:1 million. If you ever fi nd yourself in the dock, you had 
better hope your lawyer knows how to talk to juries about probability. 

 People tend to fi nd that the re-presentation of probability problems in natural 
frequency formats makes them strikingly clearer, so you may be wondering 
whether there have been any moves to incorporate this way of dealing with prob-
ability into the education system. As Bond (2009) reports, there have: Gigerenzer 
himself has been involved in educational programmes with doctors and judges, and 
primary school children in Germany have been given classes where they manipu-
late frequency information. However, we should remember one of the messages of 
the previous few pages: consider alternative hypotheses. Sure, natural frequencies 
can lead to clearer probability judgments, but how? Is it possible that they have 
their effect through a different mechanism from the one favoured by Gigerenzer’s 
school?  
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  Probability from the inside and the outside 

 Not all psychologists in this area have accepted the frequency research and theory 
– particularly the theory, with its argument for an evolutionary adaptation for 
understanding frequencies but not single-event probabilities. The natural frequency 
theory would be in trouble if it could be shown either that this format did not facili-
tate probability judgment or that some probability formats did. Evans, Handley, 
Perham, Over and Thompson (2000) claimed to have found little difference 
between hard and easy frequency formats and a probability format. However, their 
‘hard’ frequency format presented normalised frequencies (such as the 85 in every 
100 referred to above), which Gigerenzer and Hoffrage have always maintained 
would not facilitate because they obliterate base rate information. The low level of 
performance with the ‘easy’ problem, at 35%, is not easy to explain. Evans et al. 
used tasks based closely on those used by Cosmides and Tooby (1996), which, as 
we saw earlier, sometimes produced different levels of performance from those 
observed by Gigerenzer and Hoffrage. Sloman and Over (2003) also report not 
obtaining such high levels of performance as Gigerenzer and Hoffrage and 
Cosmides and Tooby did. This may be the most important point from these various 
studies: natural frequency formats do not always bring forth accuracy from a 
majority of the people presented with them, which is a problem for a theory that 
says they should. 

 Girotto and Gonzalez (2001) tested natural frequency presentations against 
a novel probability format: chances. It is novel for psychological research, but, as 
Girotto and Gonzalez remark, this format is often used in real life, and it was used 
in considering Dr Scale’s card-playing questions earlier: saying that there are 4 
chances in 52 of fi nding an ace is expressing probability in this way. They found 
that it promoted accurate judgments as well as natural frequencies did. Hoffrage, 
Gigerenzer, Krauss and Martignon (2002) counter that the chances format merely 
mimics natural frequencies, something that Girotto and Gonzalez do not accept, 
using playing cards as an example: such problems are easy, but they are not easy 
because you have sampled sets of cards, but because you know about their logical 
proportions in advance. 

 What all these authors focus on, both the Gigerenzer school and its critics, 
is an idea originally put forward, yet again, by Kahneman and Tversky: that 
probability problems asking for judgments of single events – this patient, this 
taxi – encourage a focus on the properties of the individual case in question, an 
‘inside’ view, while frequency problems encourage a focus on the class of which 
the individual case is a member, an ‘outside’ view (Kahneman & Tversky, 1982b). 
We shall see how this applies to base rate problems, with which we have been 
mainly concerned up to now, and then look at some others that have fi gured promi-
nently in the literature: the planning fallacy, overconfi dence, and the conjunction 
fallacy. 

 As far as base rate problems are concerned, both Evans et al. and Girotto and 
Gonzalez strongly emphasise what has come to be known as  nested-sets theory . This 
has also been advocated in the recent review by Barbey and Sloman (2007). 
Gigerenzer and his colleagues (see Gigerenzer & Hoffrage, 2007; Hoffrage et al., 
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2002) argue vehemently that this has always been an inherent aspect of the natural 
frequency theory in any case. It can be stated very easily. Refer back to the little 
equation above, which expresses what you need to compute from the information 
provided in Gigerenzer and Hoffrage’s tree diagrams (see  Figure 1.1 ): prob(H|D) = 
a/a+b. What Gigerenzer’s critics argue is that anything that helps you to see that  a  
is part of  a+b  should help you to the Bayesian solution, and that natural frequencies 
just happen to do this, whereas Gigerenzer argues that natural sampling is the only 
reliable way to this insight. The diagrams used by Cosmides and Tooby (see above) 
may have helped in this, and in producing such high levels of performance. 

 Sloman and Over (2003; see also Sloman, Over & Slovak, 2003) also report 
that diagrams aid Bayesian reasoning, but only when attached to tasks presented 
in single-probability format: they did not boost the already good performance 
brought about by frequency presentation, unlike in Cosmides and Tooby’s 
research. Importantly, they also used purely verbal means to clarify the nested-sets 
relation, for example:

  The probability that an average American has disease X is 1/1000. A test 
has been developed to detect if that person has disease X. If the test is given 
and the person has the disease, the test comes out positive. But the test can 
come out positive even if the person is completely healthy. Specifi cally, the 
chance is 50/1000 that someone who is perfectly healthy would test positive 
for the disease. 

 Consider an average American: what is the probability that if this person is 
tested and found to have a positive result, the person would actually have 
the disease?   

 The answer is 1/51, or 1.8%, or .018. Forty per cent of participants produced an 
answer at or near this value, a fi gure close to that commonly observed with 
frequency formats. Notice that the information is given in the form of normalised 
relative frequencies, and the question asks for a single-probability judgment, all 
aspects that, according to the Gigerenzer school, should fog your mind. Results 
such as this do not mean that the natural frequency fi ndings should be rejected, of 
course. But it does seem safe to conclude that natural frequency formats have their 
effects primarily by making set relations transparent, and that they are perhaps the 
most effective presentational tool for doing this. 

 The outside view, then, is to think about the two sets,  a  and  a+b . The inside 
view is to focus on the characteristics of the single case, the patient, accident, crime 
or suspect in question. When you take the inside view, you lose sight of the essential 
information about sets or classes and the relation between them. Here are some other 
aspects of thinking where this inside/outside confl ict seems to be operating, begin-
ning with one with which you are sure to be familiar through personal experience.  

  The planning fallacy 

 Think about a project that you are about to engage in, such as writing a piece of 
coursework, fi xing a car or redecorating a room. How likely do you think it is that 
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you will complete the task on time? Now think about similar projects that you 
completed recently. Did you bring them in on time? Research and common experi-
ence show us that our predictions tend not to be matched by reality: we are much 
less likely to meet deadlines than we think we will be before we start a project. We 
are also likely to underestimate the costs, problems and effort involved. This is the 
planning fallacy. 

 Once again, the early running in identifying and researching this problem 
was made by Kahneman and Tversky (1979a; reprinted 1982c); they even seem to 
have coined the term ‘planning fallacy’. Its essence, as Buehler, Griffi n and Ross 
(2002) explain, is the clash between an overly optimistic prediction about the 
project in hand and a more realistic history of past performance. Kahneman and 
Tversky refer to these as the  singular  and  distributional  aspects of planning. These 
correspond to the inside and outside views. Thus when estimating completion time 
for a project, we tend to focus on the ways in which this project is unique and forget 
about the ways in which it is similar to things we have done before. 

 Of course, there is more to it than just this, because our planning predictions 
tend to be inaccurate in one direction: overoptimistic. Buehler et al. identify two 
possible reasons for this. Firstly, planning is by nature about the future, and this 
orientation may prevent you looking back into the past. Secondly, when you plan a 
project you plan for its successful completion, not its failure; you will therefore 
think more about those factors that are likely to promote its success and ignore 
those that might undermine it – even if you have plenty of experience of them. 
Buehler, Griffi n and Ross (1994) collected verbal reports from students estimating 
when they would complete an assignment (only 30% met their predicted time). 
Three-quarters of their collected thoughts concerning these projects were about 
the future; only 7% referred to their own past experience, another 1% to others’ and 
only 3% referred to possible snags. 

 Reports of the adverse impact of the planning fallacy are legion, and it can be 
very costly, indeed lethal. Buehler et al. (2002) quote the case of the Sydney Opera 
House as ‘the champion of all planning disasters’ (p. 250): in 1957, it was estimated 
that it would be completed in 1963 at a cost of $7 million; it opened 10 years late at 
a cost of $102 million. On an individual level, every year we hear of tourists who 
think they can get to the top of a mountain and back by tea-time, in their t-shirts and 
shorts, and are proved wrong in the most drastic way possible: they wind up dead. 

 How then can we escape the fallacy? Buehler and colleagues put forward 
three possibilities. The fi rst is to think about sets, that is, to take the outside view; 
Kahneman and Tversky (1979a) also recommended this remedy. However, this 
seems hard to do, for a variety of reasons. For instance, Griffi n and Buehler (1999) 
had people make planning predictions about either a single project or a set of ten 
projects. They contend that the frequentist school of Gigerenzer and his associates 
would predict that the latter should have reduced the planning fallacy. But it did 
not: the fallacy was committed to the same extent in both conditions. According to 
Buehler et al. (2002), this failure was because people were unable to detach them-
selves from the inside view even when thinking about frequencies. The richness of 
real-world problems masks their statistical aspects. Taking the outside view is diffi -
cult because you have to see the current project as a sample from a population, 
which, as we saw above, is a sophisticated skill not available to untutored people; 
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and you have to construct a reference class of similar cases in the past. Sometimes, 
as Kahneman and Tversky remark, the case at hand is all you have, as in the plan-
ning of an opera house. 

 Secondly, you could think about alternatives to success: how might the 
project come unstuck? Although this kind of alternative scenario planning is 
popular in business circles, Buehler and colleagues found, as with the previous 
remedy, that it failed to overrule the planning fallacy. Even when instructed to 
generate pessimistic possibilities that were highly plausible, people neglected 
them in favour of optimistic scenarios. They did, thankfully, fi nd more encouraging 
support for their third option, which they called the  recall-relevance  manipulation. 
That is, people were encouraged to focus on their past planning history and think 
about what it might imply for their prospects of current success. This signifi cantly 
reduced the gap between prediction and reality. 

 Finally, it is worth recording aspects of the planning fallacy that Buehler and 
colleagues point to as a positive advantage for researchers interested in human 
judgment. It is a clear and simple test-bed for this work because it does not require 
any reference to logical or mathematical norms, since ‘accuracy and bias can be 
measured by the calendar and the clock’ (Buehler et al., 2002, p. 270); it has obvious 
real-world implications; and it concerns a central psychological question, about 
how we use memory to guide our thoughts and actions.  

  Overconfi dence 

 This is another kind of optimistic bias, and has been subject to a lot of attention 
from researchers: indeed, Griffi n and Brenner (2004) call it ‘the poster child of 
judgmental biases’ (p. 180). It is related to the calibration of probability judgments, 
which was discussed earlier. The overconfi dence effect is commonly observed 
with general knowledge questions, such as:

   1   Absinthe is: (a) a precious stone; (b) an alcoholic drink.  
  2   Which city is further north, Paris or New York?  
  3   Which city has the higher population: (a) Bonn; (b) Heidelberg?  
  4   What is the capital of New Zealand: (a) Auckland; (b) Wellington?    

 You can try this for yourself: take each question and, when you have an answer, 
rate how confi dent you are that the answer is correct, on a scale of 50–100%. The 
scale starts at 50% because it is possible to get half these questions right if you 
know nothing at all about them, just by guessing; 100% means you are certain that 
you are right. 

 As long ago as 1980, it was possible to sum up an already large literature on 
studies of the relation between people’s reported confi dence and their actual 
performance. Lichtenstein et al. (1982), in their review of calibration studies, 
reported that on questions where people said they were 100% confi dent, they 
tended to be only about 80% accurate; with 90% confi dence, they were 75% accurate, 
and so on. Their confi dence exceeded their performance, just as it does with the 
planning fallacy. 
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 It did not take long to discover that there is more to this bias than this, and in 
fact ‘overconfi dence’ may be a misleading term for the overall effect. One early 
complication was the  hard–easy effect . Lichtenstein and Fischhoff (1977) gave 
people three kinds of tests designed to differ in their diffi culty: there was an easy 
test (people got 85% of these questions right), a diffi cult test (61%) and a test with 
impossible questions (51% – close to the guessing rate of 50%). There was maximum 
overconfi dence with the impossible test: no matter what the participants thought 
was their probability of correctness, its actual average rate was always around 50%. 
The usual overconfi dence effect was found with the diffi cult test: a declining slope 
from 100% confi dence (around 75% accurate) down to 60% (around 55% accurate). 
However, with the easy set, there was evidence of  underconfi dence  at the lower 
levels: when people were only 50% confi dent, they were around 60% accurate. They 
were overconfi dent when they expressed a high degree of confi dence. 

 Evidence that overconfi dence is infl uenced by more than diffi culty was 
provided by Griffi n and Tversky (1992). They distinguished between the  strength  
of evidence and its  weight . In the general knowledge case, strength is your impres-
sion about what you know about, say, geography questions such as 2–4 above. 
Weight is how well that evidence predicts performance. To give another example, 
you get a very strong tip from someone about the stock market or a horse race, but 
they know very little about these things (we all know people like that): their advice 
is strong, but it carries little weight. 

 Griffi n and Tversky gave US students pairs of American states and asked 
them to choose which one scored more on various attributes: the states’ popula-
tions, their voting rates in presidential elections and their high-school graduation 
rates. They predicted that people would be quite accurate and highly confi dent 
with the population questions and quite inaccurate and less confi dent with the 
voting questions – they were. Most interestingly, they used the graduation ques-
tion to separate strength and weight: people are likely to have a strong impression 
that one state is more ‘educated’ than another, perhaps through availability of well-
known universities, but such factors have little predictive validity with respect to 
school attainment. So there should be low accuracy and high confi dence on these 
questions (i.e. a high degree of overconfi dence), which is exactly what Griffi n and 
Tversky found. 

 The inside–outside dynamic also turns out to be relevant. Several researchers, 
most notably Gigerenzer and his colleagues, have pointed to the difference in catego-
ries between the assessment that you give of your confi dence in an answer and the 
data on your accuracy. The fi rst is a single-case judgment, while the second is a 
frequency. What would happen if the confi dence judgment were also asked for in 
frequency terms? Gigerenzer, Hoffrage and Kleinbölting (1991) addressed this ques-
tion. Instead of asking people to rate their confi dence in single questions, they asked 
them to assess how many of the whole set of test questions they thought they had got 
right. If people were truly overconfi dent, this should make no difference. However, 
Gigerenzer et al. found that the overconfi dence effect disappeared with this frequency 
task. In fact, it went into reverse: in one experiment, there was a 14% overconfi dence 
effect when it was tested for in the normal way, with single questions; but with the 
frequency question, there was a difference between confi dence ratings and accuracy 
of more than −2%, indicating a slight degree of underconfi dence. 
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 Gigerenzer has a particular explanation for this effect, among others, which 
we shall return to in  Chapter 9  since it relates to decision making as well as judg-
ment. For now, we can note that we have again what appears to be an inside–outside 
difference to do with the reference classes that the two types of task, single-question 
and whole-test rating, invite you to invoke. In the case of the single question, you 
might ask yourself what you know about questions like that particular one: 
geography, say, or weird drinks. With the whole test question, you ask yourself about 
how well you tend to do on general knowledge quizzes. As with the planning fallacy, 
we tend to be better calibrated when it comes to our past histories than we are when 
we need to apply them to the case in hand.  

  The conjunction fallacy 

 This is also a very well researched aspect of thought, and one that brings the 
inside–outside distinction into sharp focus. It involves possibly the most famous 
fi ctional character in cognitive psychology. She is called Linda, and this is the Linda 
problem:

  Linda is 31 years old, single, outspoken and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues of 
discrimination and social justice, and also participated in anti-war 
demonstrations. 

 Which descriptions are most likely to be true of Linda? Rank them in order 
of probability. 

   a   Linda is a primary school teacher.  
  b   Linda works in a bookshop and takes yoga classes.  
  c   Linda is active in the feminist movement.  
  d   Linda is a psychiatric social worker.  
  e   Linda is a member of the League of Women Voters.  
  f   Linda is a bank clerk.  
  g   Linda sells insurance.  
  h   Linda is a bank clerk and is active in the feminist movement.     

 As always with these problems, it will do you good to have a go at it before 
reading on. 

 The original version of the problem was reported by Tversky and Kahneman 
(1982b, 1983); I have altered the wording slightly. Linda appeared alongside 
another problem involving Bill, but he lacked Linda’s charisma and has been 
largely forgotten. Now look at your rankings, and especially at the numbers you 
wrote against sentences  c ,  f  and  h . These are the important ones; the others are 
merely fi llers. 

 If you are like most people given this task, you ranked  c  above  h  and  h  above 
 f . If you did the second of these, as 89% of participants did in an experiment reported 
by Tversky and Kahneman (1983), you have made a logical error. Why? Because it 
is impossible for a conjunction,  x  +  y , to be more probable than one of its 
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components. You cannot be more likely to be a female student than just a student, 
or a feminist bank clerk than just a bank clerk. Note that people tend not to judge 
that Linda is more likely to be a feminist bank clerk than just a feminist; they rank 
 c  above  h . This gives a clue as to what is going on here. Tversky and Kahneman 
interpreted their fi ndings in terms of the representativeness heuristic, which was 
discussed earlier: one of the aspects of this heuristic was that people judge an item, 
such as sentence  f , as likely to the extent that it is similar in essential properties to 
its parent population. Linda sounds a bit of a radical, doesn’t she? The parent popu-
lation then is something like ‘radical women’. So people think that it is more likely 
that she is a radical bank clerk than just a bank clerk: sentence  f  might imply that 
she is  not  a feminist (Politzer & Noveck, 1991). 

 Thinking about Linda in this way is taking the inside view and focussing on 
her individual attributes. What happens when people are asked to take the outside 
view, and focus instead on the relation between classes? This was in fact done in the 
Tversky and Kahneman (1983) paper, and a replication, using a slightly different 
method, was reported by Fiedler (1988). Fiedler used a ranking task, as in the 
example above, whereas Tversky and Kahneman had people give probability 
ratings to each item. Hertwig and Gigerenzer (1999) brought the natural frequency 
theory to bear on the problem. In essence, what all these studies did was to ask 
participants to think about 100 people just like Linda, and then assess statements  f  
and  h . In all cases, the conjunction fallacy was committed far less often, sometimes 
disappearing altogether. 

 Sloman and Over (2003) present evidence that, once again, it is not frequency 
presentation itself that brings about this insight, but its ability to make set relations 
transparent: in this case, people need to see that  x  +  y  is a subset of  x . They found 
that this facilitation could be suppressed if the set relation was obscured by having 
the critical statements (  f  and  h  above) separated by seven fi ller items rather than 
just one. This happened with both rating and ranking tasks, and they also found, as 
previous researchers had, that the ranking task produced much higher rates of the 
fallacy; this point is discussed in detail by Hertwig and Chase (1998), as well as by 
Hertwig and Gigerenzer and Sloman and Over. A highly detailed review of the 
conjunction fallacy, covering more theoretical interpretations of it than I have space 
to include here, is given by Fisk (2004). 

 We have seen in this chapter how crucial probability judgment is in real-life 
thinking, and as stated at the outset it is also crucial in explaining human reasoning: 
it is central to the ‘new paradigm’ view of reasoning that has recently emerged from 
the schools of Oaksford and Chater and Evans and Over (Over, 2009). It is also at 
the core of two other forms of thinking that we shall deal with: inductive thinking 
and decision making. So let us fi rst delve into the history of the study of reasoning, 
and from there proceed to the new paradigm. Then we shall head off into these 
other areas.   

  Summary 

   1   Probability is at the heart of the explanation of many areas of thinking and 
reasoning. It is a research topic in itself, and has always been a cornerstone 
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of theories of decision making, but has recently come to the fore in the 
psychology of reasoning as well.  

  2   Probability can be formally defi ned in four ways: as logical possibility, 
frequency, propensity or subjective degree of belief.  

  3   People’s judgments of probability may systematically depart from mathemat-
ical norms: they have an insecure understanding of randomness, and tend to 
overweight low probabilities, among other biases.  

  4   Sampling is a major problem in naïve probability judgment: people are 
unaware of sampling biases and how they can bias judgment.  

  5   The most infl uential school of thought in the psychology of probability judg-
ment is the  Heuristics and Biases  research programme of Kahneman and 
Tversky. They explain sampling biases through the availability heuristic.  

  6   Belief updating is the revision of beliefs in response to evidence. Its norma-
tive theory is derived from Bayes’ rule, which weights prior belief by the 
conditional probability of the evidence, given that belief and its alternatives, 
to derive a posterior probability.  

  7   Kahneman and Tversky explain deviations in human performance in belief 
updating through heuristics such as representativeness.  

  8   Biases such as base rate neglect have been explained by Gigerenzer using 
the construct of natural sampling, that gives rise to representations of 
frequencies that obviate the need to consider base rates. This approach has 
been successfully applied to improve judgment in medical and legal contexts.  

  9   Recent research implies that the natural sampling effect may come about 
through its making set relations transparent. It facilitates an ‘outside’ view of 
probabilities (the set of cases) while bias often results from taking an ‘inside’ 
view (of the case at hand).                  
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